Mark Scheme 4725 January 2006

4725 Mark Scheme January 2006

Mark Total

1.	(i) 2 + 16i -i -8i ² 10 +15i (ii)	M1 A1 M1 A1	2	Attempt to multiply correctly Obtain correct answer Multiply numerator & denominator by conjugate Obtain denominator 5
	$\frac{1}{5}(10 + 15i)$ or 2 + 3i	A1ft	3	Their part (i) or 10 + 15i derived again / 5
			5	
2.	$1^2 = \frac{1}{6} \times 1 \times 2 \times 3$	B1		Show result true for $n = 1$ or 2
	$\frac{1}{6}n(n+1)(2n+1)+(n+1)^2$	M1		Add next term to given sum formula, any letter OK
		DM1		Attempt to factorise or expand and simplify
	$\frac{1}{6}(n+1)(n+2)\{2(n+1)+1\}$	A1	5	Correct expression obtained
	O .	A1	5	Specific statement of induction conclusion, with no errors seen
3.	(i)			
	$2\begin{bmatrix} 21\\13 \end{bmatrix} - 1\begin{bmatrix} 11\\13 \end{bmatrix} + 3\begin{bmatrix} 12\\11 \end{bmatrix}$	M1		Show correct expansion process, allow sign slips
	2 x 5 – 1 x 2 +3 x -1 5	A1 A1	3	Obtain correct (unsimplified) expression Obtain correct answer
	(ii)	B1ft	1	State that M is non-singular as det M non-zero, ft their determinant
4.			4	
	$u^2 + 4u + 4$	B1		u + 2 squared and cubed correctly
	$u^3 + 6u^2 + 12u + 8$			
		M1		Substitute these and attempt to simplify
		A1		Obtain $u^3 - 5 = 0$ or equivalent
	$u=\sqrt[3]{5}$	A1ft		Correct solution to their equation
	$x = 2 + \sqrt[3]{5}$	A1ft		Obtain 2 + their answer [Decimals score 0/2 of final A marks]
			5	
			5	

4725

Mark Scheme

January 2006

5.	$8\Sigma r^3 - 6\Sigma r^2 + 2\Sigma r$		M1		Consider the sum of three separate terms
	$8\Sigma r^3 = 2n^2(n+1)^2$		A1		Correct formula stated or used a.e.f.
	$6\Sigma r^2 = n(n+1)(2n+1)$		A1		Correct formula stated or used a.e.f.
	$2\Sigma r = n(n+1)$		A1		Correct term seen
	$2n^3(n+1)$	AG	M1 A1	6 6	Attempt to factorise or expand and simplify Obtain given answer correctly

		l	1	
6.	(i) $\frac{1}{2} \begin{pmatrix} 8 & -2 \\ -3 & 1 \end{pmatrix}$	B1	2	Transpose leading diagonal and negate other diagonal Divide by determinant
	(ii) Either $\frac{1}{2} \begin{pmatrix} 14 & 2 \\ -5 & 0 \end{pmatrix}$	B1 M1A1		State or imply $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ Use this result and obtain $\mathbf{B}^{-1} = \mathbf{C}^{-1}\mathbf{A}$, or equivalent matrix algebra
	(- 5 0) Or	M1 A1ft	5	Matrix multn., two elements correct, for any pair All elements correct ft their (i)
	$\frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$ $\mathbf{B} = \mathbf{A}^{-1} \mathbf{C}$	B1		Find A ⁻¹
	$\mathbf{B} = \frac{1}{5} \begin{pmatrix} 0 & -2 \\ 5 & 14 \end{pmatrix}$ $\frac{1}{2} \begin{pmatrix} 14 & 2 \\ -5 & 0 \end{pmatrix}$	M1 M1 A1ft		Premultiply by A ⁻¹ stated or implied Matrix multn. Two elements correct All elements correct
	Or $ \mathbf{AB} = \begin{pmatrix} 2a + c \ 2b + d \\ a + 3c \ b + 3d \end{pmatrix} $ $ a = 0, c = 1, b = -0.4, d = 2.8 $ $ \frac{1}{2} \begin{pmatrix} 14 \ 2 \end{pmatrix} $	B1 M1 A1A1		Find AB Solve one pair of simultaneous equations Each pair of answers
	$\frac{1}{2} \left(\begin{array}{c} 14 & 2 \\ -5 & 0 \end{array} \right)$	A1	7	Correct B ⁻¹

4725 Mark Scheme January 2006

7.	(a) (i) $\sqrt{13}$ (ii)	B1	1	Obtain correct answer, decimals OK
	- 0.59	M1 A1 A1	3	Using tan ^{-1 b} / _a , or equivalent trig allow + or - Obtain 0.59 Obtain correct answer
	(b)	M1		Express LHS in Cartesian form & equate real and imaginary parts
	1 – 2i	A1A1 A1	4	Obtain $x = 1$ and $y = -2$ Correct answer written as a complex number
	(c)	B1 B1	2	Sketch of vertical straight line Through (- 0.5, 0)
	(0)		10	
8.	(i)	B1		For correct vertex (2, -2)
	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix}$	B1 B1	3	For all vertices correct For correct diagram
	(ii) Either $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	B1,B1 B1		Reflection, in <i>x</i> -axis Correct matrix
	$\left(\begin{array}{cc}2&0\\0&2\end{array}\right)$	B1,B1 B1	6	Enlargement, centre O s.f.2 Correct matrix
	Or $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	B1,B1 B1		Reflection, in the <i>y</i> -axis Correct matrix
	$\left(\begin{array}{cc} -2 & 0 \\ 0 & -2 \end{array}\right)$	B1,B1 B1		Enlargement, centre O s.f. –2 Correct matrix
	Or $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$	B1,B1 B1		Stretch, in <i>x</i> -direction s.f. 2 Correct matrix
	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -2 \end{array}\right)$	B1,B1 B1		Stretch, in <i>y</i> -direction s.f2 Correct matrix
]	9	

4725 Mark Scheme January 2006

9.	2	M1		Show correct process for subtracting fractions
9.	(i) $\frac{r+2-r}{r(r+2)}$	IVII		Show correct process for subtracting fractions
	r(r+2)			
		A1	2	Obtain given answer correctly
	r(r+2)	3		
		M1		Express terms as differences using (i)
	(ii)			E 4 St O (and and O) through the transmitter
		M1		Express 1 st 3 (or last 3) terms so that cancelling occurs
				1
		A1		Obtain $1 + \frac{1}{2}$
		A1		1 1
				Obtain $-\frac{1}{n+2}$, $-\frac{1}{n+1}$
	3 1 1			n+2 $n+1$
	$\frac{3}{2} - \frac{1}{n+1} - \frac{1}{n+2}$	A1	5	Obtain correct answer in any form
	(iii) (a)			
		D4#		Obtain value from their sum to <i>n</i> terms
	$\frac{3}{2}$	B1ft	1	
	(b)			Using (iii) (a) – (ii) or method of differences again
	$\frac{1}{n+1} + \frac{1}{n+2}$	M1		[$n \rightarrow \infty$ is a method error]
	n+1 $n+2$	A1 ft	2	Obtain answer in any form
10.	(i)		10	
10.	$\alpha + \beta + \gamma = 9$			
	$\alpha + \beta + \gamma = 9$	B1	1	
	(ii)	B1		State or use other root is <i>p</i> - i <i>q</i>
		M1		Substitute into (i)
	$p = \frac{9 - \alpha}{2}$	A1		Obtain $2p + \alpha = 9$
	2	A1	4	Obtain correct answer a.e.f.
	(iii) $\alpha\beta\gamma = 29$			
	(iii) $\alpha\beta\gamma = 29$	B1	1	
	(iv)	M1		
	$\alpha(p^2 + q^2) = 29$	A1ft		Substitute into (iii) Obtain unsimplified expression with no i's
	* * *			
		M1		Rearrange to obtain q or q^2
		M1		Substitute their expression for <i>p</i> a.e.f.
	$\sqrt{29} (9 - \alpha)^2$		_	i i
	$q = \sqrt{\frac{29}{\alpha} - \frac{(9 - \alpha)^2}{4}}$	A1	5	Obtain correct answer a.e.f.
	'α 4		11	
	(iv) Alternative method	M1		Substitute into $\alpha\beta + \beta\gamma + \gamma\alpha = 27$
	$2p\alpha + p^2 + q^2 = 27$	A1		Obtain unsimplified expression with no i's
				Rearrange to obtain q or q^2
		M1		
	2	- M1		Substitute their expression for <i>p</i> a.e.f.
	$q = \sqrt{27 - \frac{(9-\alpha)^2}{4}} - \alpha(9-\alpha)$			Obtain correct answer a.e.f.
	- V 4	A1		